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______________________________________________ 
Abstract 
 This paper demonstrates the mathematical analysis of an MHD viscous flow due to a shrinking sheet in the 

presence of suction. The governing unsteady boundary layer equations are reduced to dimensionless form by 

similarity transformations. These transformed simultaneous ordinary differential equations are solved analytically. 

The approximate analytical expressions of the dimensionless velocity, dimensionless temperature and dimensionless 

concentration are derived by using the Homotopy analysis method.  Further the graphical representations of the all 

the above dimensionless quantities for all values of the other dimensionless parameters are investigated. The 

Homotopy analysis method can be easily extend it to solve other non-linear MHD fluid flow problems in 

engineering and applied sciences.  Copyright © AJESTR, all rights reserved. 
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______________________________________________________________________________ 

1. Introduction 
 The flow and heat transfer of a viscous and incompressible fluid [2] caused by a continuously moving or 

stretching surface is pertinent to many manufacturing processes. The behavior of heat transfer and flow over a 

shrinking surface, an outlook of mechanical engineering and chemical engineering, deals with applications in 

industries such as the wire drawing, hot rolling and glass wire production. A number of technical processes 
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concerning polymers involve the cooling of continuous strips or filaments by drawing them through a quiescent 

fluid. Further, glass blowing, continuous casting of metals and spinning of fibers involve the flow due to a stretching 

surface. In chemical and hydrometallurgical industries, the study of heat and mass transfer with magnetic effect is of 

considerable importance. In various situations, many authors Ramasamy Kandasamy et.al [1], Bhattacharyya et.al 

[7], Crane [6], Mohammadeian et.al [3], Brady [5], Schlitching[8] have discussed the effect of heat and mass 

transfer on nonlinear MHD boundary layer flow and Gupta et.al [4] depicted the heat and mass transfer on a 

stretching sheet with suction and blowing. Magnetohydrodynamic (MHD) is the study of magnetic properties of 

electrically conducting fluids and is important in most of the areas of science and engineering such as MHD power 

generation, MHD flow generators and MHD pumps. In recent times, the MHD fluid flow is important in many 

processes including drying evaporation at the surface of a water body, energy transfer in a wet cooling tower, flow 

in a desert cooler, generating electric power, food processing, groves of fruit trees and crop damage because of 

freezing. There is always a molecular diffusion of species on practical diffusive operations in the presence of 

chemical reaction within or at the boundary. There are two types of reactions namely, homogeneous, heterogeneous 

reaction exist in a restricted region or within the boundary of a phase. Formation of smog is an important example of 

a first-order homogeneous chemical reaction. Several researchers have discussed the facts of flows with chemical 

reactions. We can have large number of articles in the literature concerning different problems for Newtonian and 

non-Newtonian fluids with or without heat transfer analysis, for example, Hayat et.al [9] gave the analytic solution 

of MHD flow of a second grade fluid over a shrinking sheet Wang [11]presented unsteady shrinking film solution, 

Usha et.al [12] showed the axisymmetric motion of a liquid film on an unsteady stretching surface, Sajid et.al [13] 

showed the rotating flow of a viscous fluid over a shrinking surfaceand the existence and uniqueness of steady 

viscous hydrodynamic flow due to a shrinking sheet in the presence of suction have been proved by Miklavcic et.al 

[10]. The purpose of this study is obtaining an analytical solution on the effect of chemical reaction, heat and mass 

transfer on nonlinear MHD boundary layer past a porous shrinking sheet in the presence of suction. 

 

2. Mathematical Formulation of the problem 
 The MHD flow of an incompressible viscous fluid over a shrinking sheet at 0=y  is taken. axisx − is 

along and axisy −  is perpendicularly depicted in the sheet respectively, as shown in Fig.1. The fluid is assumed to 

be Newtonian and electrically conducting and the flow is confined to 0>y . A constant magnetic field of strength 

0B  acts in the direction of axisy − . The induced magnetic field is very small, which is a valid assumption on a 

laboratory scale. Our assumption is true when the magnetic Reynolds number is small. We can assume that the 

electric field ,E 0=  as no electric field is applied and the effect of polarization of the ionized fluid is negligible. 
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Fig. 1: Flow analysis on shrinking surface. 

At the horizontal surface, a constant suction is established and the flow of chemical reactions are taken place, see 

Fig. 1. The momentum, energy and diffusion of the nonlinear boundary layer equations for the MHD flow in terms 

of vector notation are defined as follows: 

Continuity equation: 

0=
→
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The governing boundary layer equations of momentum, energy and diffusion for mixed convection flow neglecting 

Joule’s viscous dissipation can be simplified using the above equations to the following equations: 
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Here w,v,u  denotes the velocity components in the zandy,x directions respectively, v  is the kinematic viscosity, 

p  is the pressure, σ  is the electrical conductivity, ρ is the density of the fluid, 0B  is the magnetic induction, α is 

the thermal conductivity of the fluid, µ  is the dynamic viscosity, K is the porous medium permeability, gc p  is the 

specific heat at constant pressure and 1k  is the rate of chemical reaction. 

The boundary conditions applicable to the present flow are 
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Here 0>a  denotes the shrinking constant, 0>W  denotes the suction velocity. When 1=m , sheet shrinks only in 

directionx − and when 2=m , the sheet shrinks axisymmetrically. 

Introducing the following similarity transformations 
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Equation (1) is identically satisfied and the eqn. (8) can be integrated to give 
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The eqns. (6) - (11) reduces to the following boundary value problem 
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In which Pr is the Prandtl number, Sc  is the Schmidt number, 2M  is the Magnetic parameter, γ   is the Chemical 

reaction parameter, λ  is the porosity parameter and S is the suction parameter can be defined as follows: 
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The sheet shrinks in x-direction, if 1=m  and the sheet shrinks in axisymmetrically, if 2=m . 

The mass diffusion equation (16) can be altered to meet these conditions if we take 0>γ for destructive reaction, 

0=γ for no reaction and 0<γ for generative reaction. 

 

3. Solution of the problem using the Homotopy Analysis Method: 
 HAM is a non-perturbative analytical method for obtaining series solutions to nonlinear equations and has 

been successfully applied to numerous problems in science and engineering [14-29]. In comparison with other 

perturbative and non-perturbative analytical methods, HAM offers the ability to adjust and control the convergence 

of a solution via the so-called convergence-control parameter. Because of this, HAM has proved to be the most 

effective method for obtaining analytical solutions to highly non-linear differential equations. Previous applications 

of HAM have mainly focused on non-linear differential equations in which the non-linearity is a polynomial in 

terms of the unknown function and its derivatives. As seen above, the non-linearity present in electro hydrodynamic 

flow takes the form of a rational function, and thus, poses a greater challenge with respect to finding approximate 

solutions analytically. Our results show that even in this case, HAM yields excellent results. 

 Liao [14-22] proposed a powerful analytical method for non-linear problems, namely the Homotopy 

analysis method. This method provides an analytical solution in terms of an infinite power series. However, there is 

a practical need to evaluate this solution and to obtain numerical values from the infinite power series. In order to 

investigate the accuracy of the Homotopy analysis method (HAM) solution with a finite number of terms, the 

system of differential equations were solved. The Homotopy analysis method is a good technique comparing to 

another perturbation method. The Homotopy analysis method contains the auxiliary parameter h , which provides us 

with a simple way to adjust and control the convergence region of solution series. The approximate analytical 

solution of the eqns. (14)-(18) using the Homotopy analysis method [37] is 
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The corresponding dimensionless velocity )(f ' η  using the eqn. (19) is given by 
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The dimensionless temperature is given by 
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The dimensionless concentration is given by 
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4. Results and Discussion 

           In this section the effects of chemical reaction in the presence of Magnetic parameter 2M , Prandtl number

Pr , Schmidt number Sc , chemical reaction parameter γ , Porosity parameter λ  and Suction parameter S , Skin 

friction m will be discussed. Fig. 1 illustrates the schematic diagram of a flow analysis on shrinking sheet. Fig. 2 

depicts the dimensionless velocity )(f ' η w.r.to the similarity variableη . Here we infer that the velocity profile

)(f ' η increases with increase in the suction parameter S in some fixed values of other dimensionless parameters

2M,m,Pr,λ . Fig. 3 to 5 shows the dimensionless velocity )(f ' η , dimensionless concentration )(ηφ , dimensionless 

temperature )(ηθ w.r.to the similarity variableη . From Fig. 3 it is observed that the velocity and temperature profile 

increases with the increase in the reaction parameter ( )0>γ  whereas the concentration of the fluid decreases with

0>γ  and in some fixed values of other parameter S,M,m,Sc,Pr, 2λ .  

From Fig. 4 it is noted that the velocity of the fluid increases and the temperature and concentration of the fluid 

decreases with increase in the magnetic parameter 2M in some fixed values of the other parameter γλ ,S,m,Sc,Pr, . 

From Fig. 5 it is noted that when the skin friction m  increases, the corresponding dimensionless velocity increases 

whereas the dimensionless temperature and concentration profiles decreases in some fixed values of the other 

dimensionless parameters S,M,,Sc,Pr, 2γλ . Table 1 shows the analysis for skin friction, rate of heat and mass 

transfer. 

 

 
Fig. 2: Dimensionless velocity )(f ' η versus the Similarity variable η . The curves are plotted  for various values of 

the suction parameter S  and some fixed values of the other parameter 2M,m,Pr,λ  using the eqn. (20), when 

00670.h −= . 
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Fig. 3: Dimensionless velocity )(f ' η , dimensionless temperature )(ηθ  and dimensionless concentration )(ηφ   

versus the Similarity variable η . The curves are plotted  for various values of the chemical reaction parameter γ  

and some fixed values of the other parameter 2M,m,S,Sc,Pr,λ  using the eqns. (20), (21) and (22), when 

003620.h −= . 

 
Fig. 4: Dimensionless velocity )(f ' η , dimensionless temperature )(ηθ  and dimensionless concentration )(ηφ   

versus the Similarity variable η . The curves are plotted  for various values of the magnetic parameter 2M  and some 

fixed values of the other parameter γλ ,S,m,Sc,Pr,  using the eqns. (20), (21) and (22), when 00660.h −= . 
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Fig. 5: Dimensionless velocity )(f ' η , dimensionless temperature )(ηθ  and dimensionless concentration )(ηφ   

versus the Similarity variable η . The curves are plotted  for various values of the skin friction m  and some fixed 

values of the other parameter γλ ,S,M,Sc,Pr, 2  using the eqns. (20), (21) and (22), when 00660.h −=  

 

Table 1:  

Analysis for skin friction, rate of heat and mass transfer. 

)(f ''' 0  )(' 0θ  )(' 0φ   Parameter 

3.302667 -2.664367 -2.410803 01.=λ   

Porosity 3.561000 -2.681655 -2.410531 02.=λ  

4.001000 -2.702625 -2.426233 03.=λ  

3.300000 -2.662428 -2.411060 01.=γ  Chemical reaction 

parameter 3.300000 -2.662428 -2.825848 02.=γ  

3.300000 -2.662428 -3.344100 03.=γ  

3.300000 -2.662428 -2.000000 012 .M =   

Magnetic strength 3.357889 -2.680901 -2.332000 022 .M =  

3.677377 -2.699117 -2.498500 032 .M =  

2.413200 -1.862588 -1.818597 01.m =   

Shrinking 4.148410 -3.725691 -2.463586 02.m =  

6.000000 -5.588726 -3.744444 03.m =  
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5. Conclusion 
             The present study provides similarity solutions on the effect of chemical reaction, heat and mass transfer for 

the non-linear MHD boundary layer flow past a porous shrinking sheet in the presence of suction. The approximated 

analytical expressions of the dimensionless velocity, dimensionless temperature and dimensionless concentration are 

derived for all values of the other dimensionless parameters by using the Homotopy analysis method. This study is 

used to observe the movement of oil or gas and water through the reservoir of an oil or gas field, in the migration of 

underground water and in the filtration and water purification processes. The results of the problem are also of great 

interest in geophysics in the study of interaction of the geomagnetic field with the fluid in the geothermal region. 
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Appendix:  A 
Basic concept of the Homotopy analysis method [14-22] 

Consider the following differential equation: 

0=)]t(u[N                                                                                    (A.1) 

Where Ν is a non-linear operator, t denote an independent variable, u(t) is an unknown function. For simplicity, we 

ignore all boundary or initial conditions, which can be treated in the similar way. By means of generalizing the 

conventional Homotopy method, Liao (2012) constructed the so-called zero-order deformation equation as: 

)]p;t([N)t(phH)]t(u)p;t([L)p( ϕϕ =−− 01                                        (A.2) 

where p∈  [0,1] is the embedding parameter, h ≠ 0 is a nonzero auxiliary parameter, H(t) ≠ 0 is an auxiliary function, 

L an auxiliary linear operator, 0u  (t)  is an initial guess of u(t), )p:t(ϕ  is an unknown function. It is important to 

note that one has great freedom to choose auxiliary unknowns in HAM. Obviously, when 0=p  and 1=p , it holds: 

)t(u);t( 00 =ϕ and )t(u);t( =1ϕ  respectively.                                                                  (A.3) 

Thus, as p increases from 0 to 1, the solution )p;t(ϕ varies from the initial guess )t(u0  to the solution u (t). 

Expanding )p;t(ϕ  in Taylor series with respect to p, we have: 
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∑
+∞

=

+=
1

0
m

m
m p)t(u)t(u)p;t(ϕ                                                        (A.4) 

Where 

0
1

=
∂

∂
= pm

m

m p
)p;t(

!m
)t(u ϕ                                                        (A.5) 

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary function are so properly 

chosen, the series (A.4) converges at p =1 then we have: 

∑
+∞

=

+=
1

0
m

m )t(u)t(u)t(u .                                                                                  (A.6) 

Differentiating (A.2) for m times with respect to the embedding parameter p, and then setting p = 0 and finally 

dividing them by m!, we will have the so-called mth -order deformation equation as: 

)u()t(hH]uu[L mmmmm 11 −
→

− ℜ=− χ                                                       (A.7) 

Where 

1

1

1
1

1
−

−

−
→

∂

∂
−

=ℜ m

m

mm p
)]p;t([N

)!m(
)u( ϕ                                                       (A.8) 

And 





>
≤

=
 1   1,

,1  0
.m

m,
mχ                                                         (A.9) 

Applying 1−L  on both side of equation (A7), we get 

)]u()t(H[hL)t(u)t(u mmmmm

→

−
−

− ℜ+= 1
1

1χ                                                     (A10) 

In this way, it is easily to obtain mu  for ,1≥m  at thM  order, we have 

∑
=

=
M

m
m )t(u)t(u

0                                                                                                                                                     
(A.11) 

When +∞→M , we get an accurate approximation of the original equation (A.1). For the convergence of the above 

method we refer the reader to Liao [20]. If equation (A.1) admits unique solution, then this method will produce the 

unique solution. 

Appendix B: 

Approximate analytical expressions of the non-linear differential eqns. (14)-(37) using the Homotopy analysis 

method 

022 =+−+− ''''''' ffmff)PrM(f λ                                                                                                               (B.1) 

0=−+ '''' fPrfPrm θθθ                                                                                                                                     (B.2) 

0=−+− φγφφφ ScfScmfSc ''''                                                                                                                           (B.3) 



American Journal of Engineering Science and Technology Research                                                                    
Vol. 4, No. 1, March 2016, pp. 1-17, ISSN: 2327-8269 (Online)                                                                        
Available online at www.ajestr.com 

 

 

14 
 

We construct the Homotopy for the eqns. (B.1), (B.2) and (B.3) are as follows: 

( ) [ ] 01 22 =+−+−−− '''''''''' mffff)PrM(fhpf)p( λ                                                                                     (B.4) 

( ) [ ] 01 =−+−− '''''' fPrfPrmhp)p( θθθθ                                                                                                         (B.5) 
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                                                         (B.6) 

The approximate solution of the eqns. (B.4), (B.5) and (B.6) are as follows: 

...fpfppfff ++++= 3
3

2
2

10                                                                                                                             (B.7) 

...ppp ++++= 3
3

2
2

10 θθθθθ                                                                                                                            (B.8) 

...ppp ++++= 3
3

2
2

10 φφφφφ                                                                                                                            (B.9) 

Substituting the eqns. (B.7), (B.8) and (B.9) to the eqns. (B.4), (B.5) and (B.6) respectively, we get 



































+++
++++

++++
−

++++
+−

++++

=








 +++
−

2
2

2
10

2

2
2

10

2
3

3
2

2
10

3
3

2
2

102

3
3

3
2

2
10

3

3
2

2
10

3
1

η

η

η
λ

η

η

d
..)fppff(d

..)fppff(m

d
...)fpfppff(d

d
...)fpfppff(d

)PrM(

d
...)fpfppff(d

hp
d

..)fppff(d
)p(                       (B.10) 

 

( )

( )


























++
+++−

+++
+++

+++

=








 +++
−

η
θθθ

η
θθθ

η

θθθ

η

θθθ

d
...pffd

...)ppPr(

d
...)pp(d

...pffPrm

d
...)pp(d

hp
d

...)pp(d
)p(

10
2

2
10

2
2

10
10

2
2

2
10

2

2
2

2
10

2
1

                             

(B.11)  

( )

( )































++++−

+++
+++

+++
++

−

++++

=








 +++
−

...)ppp(Sc

d
...)pp(d

...pffmSc

...)pp(
d

...pffd
Sc

d
...)ppp(d

hp
d

...)pp(d
)p(

3
3

2
2

10

2
2

10
10

2
2

10
10

2
3

3
2

2
10

2

2
2

2
10

2
1

φφφφγ

η
φφφ

φφφ
η

η

φφφφ

η

φφφ

                              

(B.12) 

Comparing the coefficients of like powers of p in the eqns. (B.10), (B.11) and (B.12) we get 
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The initial approximations are as follows: 
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For this HAM solution, we choose the initial guesses in the following form which satisfies the eqn. (B.19): 

MSmPrMSmPr
eS)(f
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η                                                                                                                         (B.21) 

( )ScmSxe)( −=ηθ0                                                                                                                                                   (B.22) 

( )xe)( λγηφ −=0                                                                                                                                                       (B.23) 

By solving the eqns. (B.16) - (B.18) using the boundary condition (B.20) we can obtain the following results:         
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According to the Homotopy analysis method we have  
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ff)(flimf
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Using the eqns. (B.21) - (B.26) in (B.27) – (B.29) respectively, we obtain the solutions in the text eqns. (19)–(22). 

 

Appendix: C 

Nomenclature 

Symbol Meaning 

V  velocity 
p  Pressure 

v  Kinematic coefficient of viscosity 
η  Similarity variable 
ρ  density constant 

)(f ' η  Dimensionless velocity 

θ  Dimensionless temperature 

φ  Dimensionless concentration 

Pr  Prandtl number 
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Sc  Schmidt number 

2M  Magnetic parameter 

λ  Porosity parameter 
γ  Chemical reaction parameter 

m  Skin friction 

S  Suction parameter 

 


